Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553642

RESUMO

Adult individuals with Down syndrome (DS) develop Alzheimer disease (AD). Whether there is a difference between AD in DS and AD regarding the structure of amyloid-ß (Aß) and tau filaments is unknown. Here we report the structure of Aß and tau filaments from two DS brains. We found two Aß40 filaments (types IIIa and IIIb) that differ from those previously reported in sporadic AD and two types of Aß42 filaments (I and II) identical to those found in sporadic and familial AD. Tau filaments (paired helical filaments and straight filaments) were identical to those in AD, supporting the notion of a common mechanism through which amyloids trigger aggregation of tau. This knowledge is important for understanding AD in DS and assessing whether adults with DS could be included in AD clinical trials.

2.
medRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38464214

RESUMO

Importance: The chromosome 17q21.31 region, containing a 900 Kb inversion that defines H1 and H2 haplotypes, represents the strongest genetic risk locus in progressive supranuclear palsy (PSP). In addition to H1 and H2, various structural forms of 17q21.31, characterized by the copy number of α, ß, and γ duplications, have been identified. However, the specific effect of each structural form on the risk of PSP has never been evaluated in a large cohort study. Objective: To assess the association of different structural forms of 17q.21.31, defined by the copy numbers of α, ß, and γ duplications, with the risk of PSP and MAPT sub-haplotypes. Design setting and participants: Utilizing whole genome sequencing data of 1,684 (1,386 autopsy confirmed) individuals with PSP and 2,392 control subjects, a case-control study was conducted to investigate the association of copy numbers of α, ß, and γ duplications and structural forms of 17q21.31 with the risk of PSP. All study subjects were selected from the Alzheimer's Disease Sequencing Project (ADSP) Umbrella NG00067.v7. Data were analyzed between March 2022 and November 2023. Main outcomes and measures: The main outcomes were the risk (odds ratios [ORs]) for PSP with 95% CIs. Risks for PSP were evaluated by logistic regression models. Results: The copy numbers of α and ß were associated with the risk of PSP only due to their correlation with H1 and H2, while the copy number of γ was independently associated with the increased risk of PSP. Each additional duplication of γ was associated with 1.10 (95% CI, 1.04-1.17; P = 0.0018) fold of increased risk of PSP when conditioning H1 and H2. For the H1 haplotype, addition γ duplications displayed a higher odds ratio for PSP: the odds ratio increases from 1.21 (95%CI 1.10-1.33, P = 5.47 × 10-5) for H1ß1γ1 to 1.29 (95%CI 1.16-1.43, P = 1.35 × 10-6) for H1ß1γ2, 1.45 (95%CI 1.27-1.65, P = 3.94 × 10-8) for H1ß1γ3, and 1.57 (95%CI 1.10-2.26, P = 1.35 × 10-2) for H1ß1γ4. Moreover, H1ß1γ3 is in linkage disequilibrium with H1c (R2 = 0.31), a widely recognized MAPT sub-haplotype associated with increased risk of PSP. The proportion of MAPT sub-haplotypes associated with increased risk of PSP (i.e., H1c, H1d, H1g, H1o, and H1h) increased from 34% in H1ß1γ1 to 77% in H1ß1γ4. Conclusions and relevance: This study revealed that the copy number of γ was associated with the risk of PSP independently from H1 and H2. The H1 haplotype with more γ duplications showed a higher odds ratio for PSP and were associated with MAPT sub-haplotypes with increased risk of PSP. These findings expand our understanding of how the complex structure at 17q21.31 affect the risk of PSP.

3.
Commun Biol ; 7(1): 35, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182665

RESUMO

Dementia with Lewy bodies (DLB) is a common form of dementia in the elderly population. We performed genome-wide DNA methylation mapping of cerebellar tissue from pathologically confirmed DLB cases and controls to study the epigenetic profile of this understudied disease. After quality control filtering, 728,197 CpG-sites in 278 cases and 172 controls were available for the analysis. We undertook an epigenome-wide association study, which found a differential methylation signature in DLB cases. Our analysis identified seven differentially methylated probes and three regions associated with DLB. The most significant CpGs were located in ARSB (cg16086807), LINC00173 (cg18800161), and MGRN1 (cg16250093). Functional enrichment evaluations found widespread epigenetic dysregulation in genes associated with neuron-to-neuron synapse, postsynaptic specialization, postsynaptic density, and CTCF-mediated synaptic plasticity. In conclusion, our study highlights the potential importance of epigenetic alterations in the pathogenesis of DLB and provides insights into the modified genes, regions and pathways that may guide therapeutic developments.


Assuntos
Doença por Corpos de Lewy , Idoso , Humanos , Doença por Corpos de Lewy/genética , Corpos de Lewy/genética , Cerebelo , Metilação de DNA , Epigenoma
4.
medRxiv ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38234807

RESUMO

Background: Progressive supranuclear palsy (PSP) is a rare neurodegenerative disease characterized by the accumulation of aggregated tau proteins in astrocytes, neurons, and oligodendrocytes. Previous genome-wide association studies for PSP were based on genotype array, therefore, were inadequate for the analysis of rare variants as well as larger mutations, such as small insertions/deletions (indels) and structural variants (SVs). Method: In this study, we performed whole genome sequencing (WGS) and conducted association analysis for single nucleotide variants (SNVs), indels, and SVs, in a cohort of 1,718 cases and 2,944 controls of European ancestry. Of the 1,718 PSP individuals, 1,441 were autopsy-confirmed and 277 were clinically diagnosed. Results: Our analysis of common SNVs and indels confirmed known genetic loci at MAPT, MOBP, STX6, SLCO1A2, DUSP10, and SP1, and further uncovered novel signals in APOE, FCHO1/MAP1S, KIF13A, TRIM24, TNXB, and ELOVL1. Notably, in contrast to Alzheimer's disease (AD), we observed the APOE ε2 allele to be the risk allele in PSP. Analysis of rare SNVs and indels identified significant association in ZNF592 and further gene network analysis identified a module of neuronal genes dysregulated in PSP. Moreover, seven common SVs associated with PSP were observed in the H1/H2 haplotype region (17q21.31) and other loci, including IGH, PCMT1, CYP2A13, and SMCP. In the H1/H2 haplotype region, there is a burden of rare deletions and duplications (P = 6.73×10-3) in PSP. Conclusions: Through WGS, we significantly enhanced our understanding of the genetic basis of PSP, providing new targets for exploring disease mechanisms and therapeutic interventions.

5.
Alzheimers Dement ; 20(2): 1156-1165, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37908186

RESUMO

INTRODUCTION: We assessed TAR DNA-binding protein 43 (TDP-43) seeding activity and aggregates detection in olfactory mucosa of patients with frontotemporal lobar degeneration with TDP-43-immunoreactive pathology (FTLD-TDP) by TDP-43 seeding amplification assay (TDP43-SAA) and immunocytochemical analysis. METHODS: The TDP43-SAA was optimized using frontal cortex samples from 16 post mortem cases with FTLD-TDP, FTLD with tau inclusions, and controls. Subsequently, olfactory mucosa samples were collected from 17 patients with FTLD-TDP, 15 healthy controls, and three patients carrying MAPT variants. RESULTS: TDP43-SAA discriminated with 100% accuracy post mortem cases presenting or lacking TDP-43 neuropathology. TDP-43 seeding activity was detectable in the olfactory mucosa, and 82.4% of patients with FTLD-TDP tested positive, whereas 86.7% of controls tested negative (P < 0.001). Two out of three patients with MAPT mutations tested negative. In TDP43-SAA positive samples, cytoplasmatic deposits of phosphorylated TDP-43 in the olfactory neural cells were detected. DISCUSSION: TDP-43 aggregates can be detectable in olfactory mucosa, suggesting that TDP43-SAA might be useful for identifying and monitoring FTLD-TDP in living patients.


Assuntos
Demência Frontotemporal , Degeneração Lobar Frontotemporal , Humanos , Demência Frontotemporal/genética , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/patologia , Proteínas tau/genética , Proteínas tau/metabolismo , Lobo Frontal/metabolismo , Neurônios/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
6.
Nature ; 625(7994): 345-351, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38057661

RESUMO

Frontotemporal lobar degeneration (FTLD) causes frontotemporal dementia (FTD), the most common form of dementia after Alzheimer's disease, and is often also associated with motor disorders1. The pathological hallmarks of FTLD are neuronal inclusions of specific, abnormally assembled proteins2. In the majority of cases the inclusions contain amyloid filament assemblies of TAR DNA-binding protein 43 (TDP-43) or tau, with distinct filament structures characterizing different FTLD subtypes3,4. The presence of amyloid filaments and their identities and structures in the remaining approximately 10% of FTLD cases are unknown but are widely believed to be composed of the protein fused in sarcoma (FUS, also known as translocated in liposarcoma). As such, these cases are commonly referred to as FTLD-FUS. Here we used cryogenic electron microscopy (cryo-EM) to determine the structures of amyloid filaments extracted from the prefrontal and temporal cortices of four individuals with FTLD-FUS. Surprisingly, we found abundant amyloid filaments of the FUS homologue TATA-binding protein-associated factor 15 (TAF15, also known as TATA-binding protein-associated factor 2N) rather than of FUS itself. The filament fold is formed from residues 7-99 in the low-complexity domain (LCD) of TAF15 and was identical between individuals. Furthermore, we found TAF15 filaments with the same fold in the motor cortex and brainstem of two of the individuals, both showing upper and lower motor neuron pathology. The formation of TAF15 amyloid filaments with a characteristic fold in FTLD establishes TAF15 proteinopathy in neurodegenerative disease. The structure of TAF15 amyloid filaments provides a basis for the development of model systems of neurodegenerative disease, as well as for the design of diagnostic and therapeutic tools targeting TAF15 proteinopathy.


Assuntos
Degeneração Lobar Frontotemporal , Fatores Associados à Proteína de Ligação a TATA , Humanos , Amiloide/química , Amiloide/metabolismo , Amiloide/ultraestrutura , Tronco Encefálico/metabolismo , Tronco Encefálico/patologia , Microscopia Crioeletrônica , Demência Frontotemporal/etiologia , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Degeneração Lobar Frontotemporal/complicações , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Córtex Motor/metabolismo , Córtex Motor/patologia , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Fatores Associados à Proteína de Ligação a TATA/química , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fatores Associados à Proteína de Ligação a TATA/ultraestrutura , Lobo Temporal/metabolismo , Lobo Temporal/patologia
7.
Acta Neuropathol Commun ; 11(1): 191, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049918

RESUMO

We used electron cryo-microscopy (cryo-EM) to determine the structures of Aß40 filaments from the leptomeninges of individuals with Alzheimer's disease and cerebral amyloid angiopathy. In agreement with previously reported structures, which were solved to a resolution of 4.4 Å, we found three types of filaments. However, our new structures, solved to a resolution of 2.4 Å, revealed differences in the sequence assignment that redefine the fold of Aß40 peptides and their interactions. Filaments are made of pairs of protofilaments, the ordered core of which comprises D1-G38. The different filament types comprise one, two or three protofilament pairs. In each pair, residues H14-G37 of both protofilaments adopt an extended conformation and pack against each other in an anti-parallel fashion, held together by hydrophobic interactions and hydrogen bonds between main chains and side chains. Residues D1-H13 fold back on the adjacent parts of their own chains through both polar and non-polar interactions. There are also several additional densities of unknown identity. Sarkosyl extraction and aqueous extraction gave the same structures. By cryo-EM, parenchymal deposits of Aß42 and blood vessel deposits of Aß40 have distinct structures, supporting the view that Alzheimer's disease and cerebral amyloid angiopathy are different Aß proteinopathies.


Assuntos
Doença de Alzheimer , Angiopatia Amiloide Cerebral , Humanos , Peptídeos beta-Amiloides/química , Microscopia Crioeletrônica , Fragmentos de Peptídeos , Amiloide , Placa Amiloide
8.
Brain ; 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38000783

RESUMO

It is increasingly evident that the association of glycans with the prion protein (PrP), a major post-translational modification, significantly impacts the pathogenesis of prion diseases. A recent bioassay study has provided evidence that the presence of PrP glycans decreases spongiform degeneration (SD) and disease-related PrP (PrPD) deposition in a murine model. We challenged (PRNPN181Q/197Q) transgenic (Tg) mice expressing glycan-free human PrP (TgGlyc-), with isolates from sCJDMM2, sporadic fatal insomnia, and familial fatal insomnia, three human prion diseases that are distinct but share histotypic and PrPD features. TgGlyc- mice accurately replicated the basic histotypic features associated with the three diseases but the transmission was characterized by high attack rates, shortened incubation periods, and a greatly increased severity of the histopathology, including the presence of up to 40 times higher quantities of PrPD that formed prominent deposits. Although the engineered protease-resistant PrPD shared at least some features of the secondary structure and the presence of the anchorless PrPD variant with the wild-type PrPD, it exhibited different density gradient profiles of the PrPD aggregates and a higher stability index. The severity of the histopathological features including PrP deposition appeared to be related to the incubation period duration. These findings are clearly consistent with the protective role of the PrP glycans but also emphasize the complexity of the conformational changes that impact PrPD following glycan knock-out. Future studies will determine whether these features apply broadly to other human prion diseases or are PrPD-type dependent.

9.
Nature ; 620(7975): 898-903, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532939

RESUMO

The abnormal assembly of TAR DNA-binding protein 43 (TDP-43) in neuronal and glial cells characterizes nearly all cases of amyotrophic lateral sclerosis (ALS) and around half of cases of frontotemporal lobar degeneration (FTLD)1,2. A causal role for TDP-43 assembly in neurodegeneration is evidenced by dominantly inherited missense mutations in TARDBP, the gene encoding TDP-43, that promote assembly and give rise to ALS and FTLD3-7. At least four types (A-D) of FTLD with TDP-43 pathology (FTLD-TDP) are defined by distinct brain distributions of assembled TDP-43 and are associated with different clinical presentations of frontotemporal dementia8. We previously showed, using cryo-electron microscopy, that TDP-43 assembles into amyloid filaments in ALS and type B FTLD-TDP9. However, the structures of assembled TDP-43 in FTLD without ALS remained unknown. Here we report the cryo-electron microscopy structures of assembled TDP-43 from the brains of three individuals with the most common type of FTLD-TDP, type A. TDP-43 formed amyloid filaments with a new fold that was the same across individuals, indicating that this fold may characterize type A FTLD-TDP. The fold resembles a chevron badge and is unlike the double-spiral-shaped fold of ALS and type B FTLD-TDP, establishing that distinct filament folds of TDP-43 characterize different neurodegenerative conditions. The structures, in combination with mass spectrometry, led to the identification of two new post-translational modifications of assembled TDP-43, citrullination and monomethylation of R293, and indicate that they may facilitate filament formation and observed structural variation in individual filaments. The structures of TDP-43 filaments from type A FTLD-TDP will guide mechanistic studies of TDP-43 assembly, as well as the development of diagnostic and therapeutic compounds for TDP-43 proteinopathies.


Assuntos
Proteínas de Ligação a DNA , Demência Frontotemporal , Degeneração Lobar Frontotemporal , Humanos , Citrulinação , Microscopia Crioeletrônica , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/ultraestrutura , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Degeneração Lobar Frontotemporal/classificação , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Metilação
10.
Acta Neuropathol ; 146(2): 211-226, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37351604

RESUMO

Two siblings with deletion mutation ∆K281 in MAPT developed frontotemporal dementia. At autopsy, numerous inclusions of hyperphosphorylated 3R Tau were present in neurons and glial cells of neocortex and some subcortical regions, including hippocampus, caudate/putamen and globus pallidus. The inclusions were argyrophilic with Bodian silver, but not with Gallyas-Braak silver. They were not labelled by an antibody specific for tau phosphorylated at S262 and/or S356. The inclusions were stained by luminescent conjugated oligothiophene HS-84, but not by bTVBT4. Electron cryo-microscopy revealed that the core of tau filaments was made of residues K254-F378 of 3R Tau and was indistinguishable from that of Pick's disease. We conclude that MAPT mutation ∆K281 causes Pick's disease.


Assuntos
Demência Frontotemporal , Doença de Pick , Humanos , Doença de Pick/genética , Prata , Proteínas tau/genética , Proteínas tau/química , Demência Frontotemporal/genética , Neurônios , Mutação/genética
11.
Neuropathology ; 43(6): 441-456, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37198977

RESUMO

Hyaline protoplasmic astrocytopathy (HPA) describes a rare histologic finding of eosinophilic, hyaline cytoplasmic inclusions in astrocytes, predominantly in the cerebral cortex. It has mainly been observed in children and adults with a history of developmental delay and epilepsy, frequently with focal cortical dysplasia (FCD), but the nature and significance of these inclusions are unclear. In this study, we review the clinical and pathologic features of HPA and characterize the inclusions and brain tissue in which they are seen in surgical resection specimens from five patients with intractable epilepsy and HPA compared to five patients with intractable epilepsy without HPA using immunohistochemistry for filamin A, previously shown to label these inclusions, and a variety of astrocytic markers including aldehyde dehydrogenase 1 family member L1 (ALDH1L1), SRY-Box Transcription Factor 9 (SOX9), and glutamate transporter 1/excitatory amino acid transporter 2 (GLT-1/EAAT2) proteins. The inclusions were positive for ALDH1L1 with increased ALDH1L1 expression in areas of gliosis. SOX9 was also positive in the inclusions, although to a lesser intensity than the astrocyte nuclei. Filamin A labeled the inclusions but also labeled reactive astrocytes in a subset of patients. The immunoreactivity of the inclusions for various astrocytic markers and filamin A as well as the positivity of filamin A in reactive astrocytes raise the possibility that these astrocytic inclusions may be the result of an uncommon reactive or degenerative phenomenon.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Criança , Adulto , Humanos , Filaminas/metabolismo , Hialina , Encéfalo/patologia , Astrócitos/patologia
12.
Sci Data ; 10(1): 206, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37059743

RESUMO

Alzheimer's disease (AD) is a looming public health disaster with limited interventions. Alzheimer's is a complex disease that can present with or without causative mutations and can be accompanied by a range of age-related comorbidities. This diverse presentation makes it difficult to study molecular changes specific to AD. To better understand the molecular signatures of disease we constructed a unique human brain sample cohort inclusive of autosomal dominant AD dementia (ADD), sporadic ADD, and those without dementia but with high AD histopathologic burden, and cognitively normal individuals with no/minimal AD histopathologic burden. All samples are clinically well characterized, and brain tissue was preserved postmortem by rapid autopsy. Samples from four brain regions were processed and analyzed by data-independent acquisition LC-MS/MS. Here we present a high-quality quantitative dataset at the peptide and protein level for each brain region. Multiple internal and external control strategies were included in this experiment to ensure data quality. All data are deposited in the ProteomeXchange repositories and available from each step of our processing.


Assuntos
Doença de Alzheimer , Proteômica , Humanos , Doença de Alzheimer/genética , Encéfalo/patologia , Cromatografia Líquida , Peptídeos , Espectrometria de Massas em Tandem
13.
J Neuroinflammation ; 20(1): 78, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944969

RESUMO

BACKGROUND: Neuroinflammation is an important feature of Alzheimer's disease (AD). Understanding which aspects of the immune system are important in AD may lead to new therapeutic approaches. We study the major histocompatibility complex class I-related immune molecule, MR1, which is recognized by an innate-like T cell population called mucosal-associated invariant T (MAIT) cells. METHODS: Having found that MR1 gene expression is elevated in the brain tissue of AD patients by mining the Agora database, we sought to examine the role of the MR1/MAIT cell axis in AD pathology. Brain tissue from AD patients and the 5XFAD mouse model of AD were used to analyze MR1 expression through qPCR, immunofluorescence, and flow cytometry. Furthermore, mice deficient in MR1 and MAIT cells were crossed with the 5XFAD mice to produce a model to study how the loss of this innate immune axis alters AD progression. Moreover, 5XFAD mice were also used to study brain-resident MAIT cells over time. RESULTS: In tissue samples from AD patients and 5XFAD mice, MR1 expression was substantially elevated in the microglia surrounding plaques vs. those that are further away (human AD: P < 0.05; 5XFAD: P < 0.001). In 5XFAD mice lacking the MR1/MAIT cell axis, the development of amyloid-beta plaque pathology occurred at a significantly slower rate than in those mice with MR1 and MAIT cells. Furthermore, in brain tissue from 5XFAD mice, there was a temporal increase in MAIT cell numbers (P < 0.01) and their activation state, the latter determined by detecting an upregulation of both CD69 (P < 0.05) and the interleukin-2 receptor alpha chain (P < 0.05) via flow cytometry. CONCLUSIONS: Together, these data reveal a previously unknown role for the MR1/MAIT cell innate immune axis in AD pathology and its potential utility as a novel therapeutic target.


Assuntos
Doença de Alzheimer , Células T Invariantes Associadas à Mucosa , Humanos , Camundongos , Animais , Células T Invariantes Associadas à Mucosa/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Menor/metabolismo
14.
Acta Neuropathol ; 145(2): 159-173, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36512061

RESUMO

An international consensus report in 2019 recommended a classification system for limbic-predominant age-related TDP-43 encephalopathy neuropathologic changes (LATE-NC). The suggested neuropathologic staging system and nomenclature have proven useful for autopsy practice and dementia research. However, some issues remain unresolved, such as cases with unusual features that do not fit with current diagnostic categories. The goal of this report is to update the neuropathologic criteria for the diagnosis and staging of LATE-NC, based primarily on published data. We provide practical suggestions about how to integrate available genetic information and comorbid pathologies [e.g., Alzheimer's disease neuropathologic changes (ADNC) and Lewy body disease]. We also describe recent research findings that have enabled more precise guidance on how to differentiate LATE-NC from other subtypes of TDP-43 pathology [e.g., frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS)], and how to render diagnoses in unusual situations in which TDP-43 pathology does not follow the staging scheme proposed in 2019. Specific recommendations are also made on when not to apply this diagnostic term based on current knowledge. Neuroanatomical regions of interest in LATE-NC are described in detail and the implications for TDP-43 immunohistochemical results are specified more precisely. We also highlight questions that remain unresolved and areas needing additional study. In summary, the current work lays out a number of recommendations to improve the precision of LATE-NC staging based on published reports and diagnostic experience.


Assuntos
Doença de Alzheimer , Esclerose Lateral Amiotrófica , Demência Frontotemporal , Humanos , Doença de Alzheimer/patologia , Demência Frontotemporal/patologia , Esclerose Lateral Amiotrófica/patologia , Proteínas de Ligação a DNA/genética
15.
Biomedicines ; 10(11)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36359362

RESUMO

Neurocytomas are rare low-grade brain tumors predominantly affecting young adults, but their cellular origin and molecular pathogenesis is largely unknown. We previously reported a sellar neurocytoma that secreted excess arginine vasopressin causing syndrome of inappropriate anti-diuretic hormone (SIADH). Whole exome sequencing in 21 neurocytoma tumor tissues identified somatic mutations in the plant homeodomain finger protein 14 (PHF14) in 3/21 (14%) tumors. Of these mutations, two were missense mutations and 4 caused splicing site losses, resulting in PHF14 dysfunction. Employing shRNA-mediated knockdown and CRISPR/Cas9-based knockout approaches, we demonstrated that loss of PHF14 increased proliferation and colony formation in five different human, mouse and rat mesenchymal and differentiated cell lines. Additionally, we demonstrated that PHF14 depletion resulted in upregulation of platelet derived growth factor receptor-alpha (PDGFRα) mRNA and protein in neuroblastoma SHSY-5Y cells and led to increased sensitivity to treatment with the PDGFR inhibitor Sunitinib. Furthermore, in a neurocytoma primary culture harboring splicing loss PHF14 mutations, overexpression of wild-type PHF14 and sunitinib treatment inhibited cell proliferation. Nude mice, inoculated with PHF14 knockout SHSY-5Y cells developed earlier and larger tumors than control cell-inoculated mice and Sunitinib administration caused greater tumor suppression in mice harboring PHF-14 knockout than control SHSY-5Y cells. Altogether our studies identified mutations of PHF14 in 14% of neurocytomas, demonstrate it can serve as an alternative pathway for certain cancerous behavior, and suggest a potential role for Sunitinib treatment in some patients with residual/recurrent neurocytoma.

16.
Mov Disord ; 37(10): 2110-2121, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35997131

RESUMO

BACKGROUND: Multiple System Atrophy is a rare neurodegenerative disease with alpha-synuclein aggregation in glial cytoplasmic inclusions and either predominant olivopontocerebellar atrophy or striatonigral degeneration, leading to dysautonomia, parkinsonism, and cerebellar ataxia. One prior genome-wide association study in mainly clinically diagnosed patients with Multiple System Atrophy failed to identify genetic variants predisposing for the disease. OBJECTIVE: Since the clinical diagnosis of Multiple System Atrophy yields a high rate of misdiagnosis when compared to the neuropathological gold standard, we studied only autopsy-confirmed cases. METHODS: We studied common genetic variations in Multiple System Atrophy cases (N = 731) and controls (N = 2898). RESULTS: The most strongly disease-associated markers were rs16859966 on chromosome 3, rs7013955 on chromosome 8, and rs116607983 on chromosome 4 with P-values below 5 × 10-6 , all of which were supported by at least one additional genotyped and several imputed single nucleotide polymorphisms. The genes closest to the chromosome 3 locus are ZIC1 and ZIC4 encoding the zinc finger proteins of cerebellum 1 and 4 (ZIC1 and ZIC4). INTERPRETATION: Since mutations of ZIC1 and ZIC4 and paraneoplastic autoantibodies directed against ZIC4 are associated with severe cerebellar dysfunction, we conducted immunohistochemical analyses in brain tissue of the frontal cortex and the cerebellum from 24 Multiple System Atrophy patients. Strong immunohistochemical expression of ZIC4 was detected in a subset of neurons of the dentate nucleus in all healthy controls and in patients with striatonigral degeneration, whereas ZIC4-immunoreactive neurons were significantly reduced inpatients with olivopontocerebellar atrophy. These findings point to a potential ZIC4-mediated vulnerability of neurons in Multiple System Atrophy. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Atrofia de Múltiplos Sistemas , Atrofias Olivopontocerebelares , Degeneração Estriatonigral , Autoanticorpos , Autopsia , Estudo de Associação Genômica Ampla , Humanos , Atrofia de Múltiplos Sistemas/genética , Atrofia de Múltiplos Sistemas/patologia , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , alfa-Sinucleína/metabolismo
17.
Neuropathol Appl Neurobiol ; 48(6): e12836, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35836354

RESUMO

AIMS: Frontotemporal dementias are neuropathologically characterised by frontotemporal lobar degeneration (FTLD). Intraneuronal inclusions of transactive response DNA-binding protein 43 kDa (TDP-43) are the defining pathological hallmark of approximately half of the FTLD cases, being referred to as FTLD-TDP. The classification of FTLD-TDP into five subtypes (Type A to Type E) is based on pathologic phenotypes; however, the molecular determinants underpinning the phenotypic heterogeneity of FTLD-TDP are not well known. It is currently undetermined whether TDP-43 post-translational modifications (PTMs) may be related to the phenotypic diversity of the FTLDs. Thus, the investigation of FTLD-TDP Type A and Type B, associated with GRN and C9orf72 mutations, becomes essential. METHODS: Immunohistochemistry was used to identify and map the intraneuronal inclusions. Sarkosyl-insoluble TDP-43 was extracted from brains of GRN and C9orf72 mutation carriers post-mortem and studied by Western blot analysis, immuno-electron microscopy and mass spectrometry. RESULTS: Filaments of TDP-43 were present in all FTLD-TDP preparations. PTM profiling identified multiple phosphorylated, N-terminal acetylated or otherwise modified residues, several of which have been identified for the first time as related to sarkosyl-insoluble TDP-43. Several PTMs were specific for either Type A or Type B, while others were identified in both types. CONCLUSIONS: The current results provide evidence that the intraneuronal inclusions in the two genetic diseases contain TDP-43 filaments. The discovery of novel, potentially type-specific TDP-43 PTMs emphasises the need to determine the mechanisms leading to filament formation and PTMs, and the necessity of exploring the validity and occupancy of PTMs in a prognostic/diagnostic setting.


Assuntos
Demência Frontotemporal , Degeneração Lobar Frontotemporal , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/genética , Degeneração Lobar Frontotemporal/patologia , Humanos , Progranulinas/genética , Progranulinas/metabolismo , Processamento de Proteína Pós-Traducional
18.
Nature ; 605(7909): 310-314, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35344985

RESUMO

Many age-dependent neurodegenerative diseases, such as Alzheimer's and Parkinson's, are characterized by abundant inclusions of amyloid filaments. Filamentous inclusions of the proteins tau, amyloid-ß, α-synuclein and transactive response DNA-binding protein (TARDBP; also known as TDP-43) are the most common1,2. Here we used structure determination by cryogenic electron microscopy to show that residues 120-254 of the lysosomal type II transmembrane protein 106B (TMEM106B) also form amyloid filaments in human brains. We determined the structures of TMEM106B filaments from a number of brain regions of 22 individuals with abundant amyloid deposits, including those resulting from sporadic and inherited tauopathies, amyloid-ß amyloidoses, synucleinopathies and TDP-43 proteinopathies, as well as from the frontal cortex of 3 individuals with normal neurology and no or only a few amyloid deposits. We observed three TMEM106B folds, with no clear relationships between folds and diseases. TMEM106B filaments correlated with the presence of a 29-kDa sarkosyl-insoluble fragment and globular cytoplasmic inclusions, as detected by an antibody specific to the carboxy-terminal region of TMEM106B. The identification of TMEM106B filaments in the brains of older, but not younger, individuals with normal neurology indicates that they form in an age-dependent manner.


Assuntos
Envelhecimento , Amiloide , Amiloidose , Encéfalo , Proteínas de Membrana , Proteínas do Tecido Nervoso , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Amiloidose/metabolismo , Encéfalo/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Placa Amiloide/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo
19.
Science ; 375(6577): 167-172, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35025654

RESUMO

Filament assembly of amyloid-ß peptides ending at residue 42 (Aß42) is a central event in Alzheimer's disease. Here, we report the cryo­electron microscopy (cryo-EM) structures of Aß42 filaments from human brains. Two structurally related S-shaped protofilament folds give rise to two types of filaments. Type I filaments were found mostly in the brains of individuals with sporadic Alzheimer's disease, and type II filaments were found in individuals with familial Alzheimer's disease and other conditions. The structures of Aß42 filaments from the brain differ from those of filaments assembled in vitro. By contrast, in AppNL-F knock-in mice, Aß42 deposits were made of type II filaments. Knowledge of Aß42 filament structures from human brains may lead to the development of inhibitors of assembly and improved imaging agents.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/ultraestrutura , Química Encefálica , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/ultraestrutura , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Peptídeos beta-Amiloides/genética , Animais , Microscopia Crioeletrônica , Feminino , Técnicas de Introdução de Genes , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Modelos Animais , Modelos Moleculares , Fragmentos de Peptídeos/genética , Conformação Proteica , Conformação Proteica em Folha beta , Domínios Proteicos , Dobramento de Proteína
20.
Brain ; 145(6): 2161-2176, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34918018

RESUMO

Individuals with familial Alzheimer's disease due to PSEN1 mutations develop high cortical fibrillar amyloid-ß load but often have lower cortical 11C-Pittsburgh compound B (PiB) retention than Individuals with sporadic Alzheimer's disease. We hypothesized this is influenced by limited interactions of Pittsburgh compound B with cotton wool plaques, an amyloid-ß plaque type common in familial Alzheimer's disease but rare in sporadic Alzheimer's disease. Histological sections of frontal and temporal cortex, caudate nucleus and cerebellum were obtained from 14 cases with sporadic Alzheimer's disease, 12 cases with familial Alzheimer's disease due to PSEN1 mutations, two relatives of a PSEN1 mutation carrier but without genotype information and three non-Alzheimer's disease cases. Sections were processed immunohistochemically using amyloid-ß-targeting antibodies and the fluorescent amyloid stains cyano-PiB and X-34. Plaque load was quantified by percentage area analysis. Frozen homogenates from the same brain regions from five sporadic Alzheimer's disease and three familial Alzheimer's disease cases were analysed for 3H-PiB in vitro binding and concentrations of amyloid-ß1-40 and amyloid-ß1-42. Nine sporadic Alzheimer's disease, three familial Alzheimer's disease and three non-Alzheimer's disease participants had 11C-PiB PET with standardized uptake value ratios calculated using the cerebellum as the reference region. Cotton wool plaques were present in the neocortex of all familial Alzheimer's disease cases and one sporadic Alzheimer's disease case, in the caudate nucleus from four familial Alzheimer's disease cases, but not in the cerebellum. Cotton wool plaques immunolabelled robustly with 4G8 and amyloid-ß42 antibodies but weakly with amyloid-ß40 and amyloid-ßN3pE antibodies and had only background cyano-PiB fluorescence despite labelling with X-34. Relative to amyloid-ß plaque load, cyano-Pittsburgh compound B plaque load was similar in sporadic Alzheimer's disease while in familial Alzheimer's disease it was lower in the neocortex and the caudate nucleus. In both regions, insoluble amyloid-ß1-42 and amyloid-ß1-40 concentrations were similar in familial Alzheimer's disease and sporadic Alzheimer's disease groups, while 3H-PiB binding was lower in the familial Alzheimer's disease than the sporadic Alzheimer's disease group. Higher amyloid-ß1-42 concentration associated with higher 3H-PiB binding in sporadic Alzheimer's disease but not familial Alzheimer's disease. 11C-PiB retention correlated with region-matched post-mortem amyloid-ß plaque load; however, familial Alzheimer's disease cases with abundant cotton wool plaques had lower 11C-PiB retention than sporadic Alzheimer's disease cases with similar amyloid-ß plaque loads. PiB has limited ability to detect amyloid-ß aggregates in cotton wool plaques and may underestimate total amyloid-ß plaque burden in brain regions with abundant cotton wool plaques.


Assuntos
Doença de Alzheimer , Tomografia por Emissão de Pósitrons , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Compostos de Anilina/metabolismo , Encéfalo/patologia , Radioisótopos de Carbono/metabolismo , Humanos , Placa Amiloide/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA